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Abstract. In this publication the construction of an automatic algorithm to subtract infrared divergences in
real QCD corrections through the Catani-Seymour dipole subtraction method [1, 2] is reported. The result-
ing computer code has been implemented in the matrix element generator AMEGIC++ [3]. This will allow
for the automatic generation of dipole subtraction terms and their integrals over the one-parton emission
phase space for any given process. If the virtual matrix element is provided as well, this then directly leads

to an NLO QCD parton level event generator.

1 Introduction

Perturbative calculations form one of the best understood
methods to provide predictions for the behavior of a quan-
tum field theory and to compare them with experimental
results. Many of the methods applied in such calculations
have found their way into textbooks already decades ago,
see e.g. [4—8]. Typically, the perturbation parameter is re-
lated to the coupling constant of the theory in question,
which in most cases indeed is a small quantity. This also
implies that the corresponding fields may asymptotically
appear as free fields and thus are the relevant objects of
perturbation theory. Obviously, this is not true for the
strong interactions, i.e. QCD, where the fields, quarks and
gluons, asymptotically are confined in bound states only.
This is due to the scaling behavior of the coupling constant
of QCD, ag, which becomes small only for large momen-
tum transfers, see for instance [9, 10]. It is the confinement
property that to some extent restricts the validity of per-
turbative calculations in QCD to the realm of processes
characterized by large momentum transfers or by other
large scales dominating the process, such that factorization
theorems can be applied [10-12].

Typically, for most of the relevant observables in par-
ticle phenomenology, the leading term of the perturbative
expansion can be related to tree-level diagrams. In the
past years, the calculation of these terms has been fully
automated and a number of tools capable of dealing with
up to eight to ten external particles without any signifi-
cant user interference have emerged [3,13-17]. However,
for many practical purposes, tree-level calculations are not
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sufficient. This is due to a number of reasons: first of all,
many measurements aim at the extraction of fundamen-
tal parameters. However, in quantum field theories, pa-
rameters are subject to corrections, which usually exhibit
ultraviolet divergences. These divergences are dealt with
through the renormalization procedure, which can be done
in a scheme- and scale-dependent way only, see e.g. [7,18].
Therefore, in order to extract parameters from the com-
parison of a (perturbative) calculation with experimental
data, the calculation itself must contain the same kind of
quantum corrections necessitating their renormalization.
Second, it should be stressed that in tree-level calculations,
there are some choices to be made, concerning the scale at
which inputs such as the coupling constant, quark masses
or parton distribution functions are taken. In principle,
different scale choices are equivalent, and renormalization
group theory guarantees that, when taking into account all
orders, the effect of scale choices vanishes. At leading order
(LO), however, their impact may still be significant, such
that tree-level calculations merely give the order of magni-
tude for corresponding cross sections etc.; a prime example
for this is the production of a Higgs boson in gluon fusion
processes, where only the next-to-next-to leading order
correction significantly reduces the scale dependence and
produces a stable result [19, 20]. Thus, aiming at any more
precise prediction, higher-order calculations are a crucial
ingredient of phenomenological analyzes.

But although indispensable, so far there is no fully
automated tool available for QCD calculations at next-
to leading order (NLO), i.e. at the one-loop level. This is
because a true NLO calculation is certainly much more
complex than a leading order (LO) one. First of all, some
of the essential ingredients, namely the loop or virtual con-
tributions are not under full control yet. In general, up to
now calculations of these corrections to physical processes
are limited to contributions containing five- and in some
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cases six-point functions, see for example [21-26]. But even
to reach the level of known scalar master integrals is far
from being trivial; the tensor reduction necessary for this
step [27] results in a proliferation of terms with non-trivial
cancellations among them, which render the implemen-
tation in a computer code a major effort. On the other
hand, some of the loop corrections exhibit not only ultra-
violet divergences to be renormalized, but also infrared
divergences. They also need to be regularized, but then
they must be canceled against similar infrared divergences
stemming from the real contributions. This basically trans-
lates into canceling divergences in phase space volumes of
different dimensionality. The cancellation in fact is one of
the most important consequences of the Kinoshita—Lee—
Nauenberg or mass factorization theorems [28—30]. How-
ever, in order to practically achieve the cancellation, the
real infrared divergences also need to be regularized. Es-
sentially, there are two ways of doing this.

One method, also known as phase-space slicing
[31-36], bases on dividing the phase space of the additional
real emission into an infrared-safe (hard) and a infrared-
divergent (soft) region. The division is usually performed
by subjecting pairs of particles to an invariant mass cri-
terion. Then, the soft region is integrated analytically in
d dimensions. Typically, in this step, the helicity-summed
matrix element squared is approximated by its double-pole
(or eikonal) limit. The result of the analytical integra-
tion will contain single or double poles of the form 1/(d —
4) or 1/(d—4)?, respectively. They typically are accom-
panied with logarithms of the invariant mass criterion.
Such logarithms, but with opposite sign, also appear in the
numerical evaluation of the full matrix element squared
for real emission in the hard region of phase space, per-
formed in 4 dimensions. In principle, these two potentially
large contributions (logarithms of a potentially small quan-
tity) originate from the unphysical division of the phase
space and should thus cancel. Therefore, the key issue thus
in phase space slicing is to adjust the parameters of the
procedure such that the dependence on the slicing param-
eter is minimized. So far, this adjustment has been done
manually only and this is one of the reasons why other
methods have become more popular with practitioners of
NLO calculations.

Such alternative methods of dealing with the real in-
frared divergences base on directly subtracting them [1,
2,37-43]'. At NLO level the subtraction in all methods
is performed such that the additional particle is added to
the leading order matrix element in a well-defined way
through terms which, on one hand, exhibit the correct di-
vergent behavior in the soft and collinear limit, and, on
the other hand, can easily be integrated over the full d-
dimensional phase space of the extra particle. The idea is
then that the so subtracted matrix element squared is finite
and thus can safely be integrated numerically in 4 dimen-
sions. On the other hand, the subtraction term is added
to the virtual bit and integrated analytically in d dimen-
sions. Again, it exhibits single or double poles of the form

! Subtraction methods for the NNLO case have been pre-
sented in [44—52].
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1/(d—4)or1/(d—4)?, respectively. These poles again can-
cel the infrared poles of the virtual contributions. The
fact that there are universal subtraction terms, i.e. terms
which will cancel the infrared divergences in a process-
independent manner, is one of the main reasons why sub-
traction methods have become increasingly popular in past
years and why they have been used for many of the state-
of-the-art calculation of NLO corrections to physical pro-
cesses, like for instance [21-25].

The universality of the subtraction terms also allow for
an automated treatment of real infrared divergences. It is
the subject of this publication to report on a fully auto-
mated, process-independent implementation of one of the
popular subtraction procedures, ready for use in realistic
NLO calculations. Therefore, the outline of this paper is
as follows: In Sect. 2, the anatomy of QCD NLO calcula-
tions will be formalized in a more mathematical language
and the chosen subtraction method, the Catani—-Seymour
dipole subtraction [1, 2] will briefly be reviewed in its ori-
ginal form for massless particles. Although its extension to
massive particles [41] is straightforward from an algorith-
mic point of view, this paper concentrates on the mass-
less case only. In Sect. 3, the fully automated implemen-
tation of the corresponding massless dipole subtraction of
arbitrary matrix elements into the matrix element gen-
erator AMEGIC++ [3] will be presented in some detail.
Some simple tests of the implementation will be discussed
in Sect. 4, before some physical applications and the com-
parison with results from the literature will round of the
presentation in Sect. 5.

2 Brief review of the Catani—-Seymour
formalism

2.1 NLO cross sections and the subtraction procedure

Cross sections at NLO precision are given by
o =00 4 oNO | (1)

where the LO part o“© is obtained by integrating the ex-
clusive cross section in Born approximation over the avail-
able phase space of the m final state particles and, eventu-
ally, over the Bjorken-z of incident partons. Ignoring this
additional complication for the sake of a compact notation,
The LO cross section is thus given by

oO :/ d(4)aB, (2)
where
dWeB = dWe™ | M, 2 F™ (3)

Here, d®W@(m) denotes the phase space element of m par-
ticles, taken in four dimensions, M,, is the matrix element
for the process under consideration, and FJ(m) is a func-
tion of cuts defining the jets etc. As already indicated, here
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and in the following, the superscripts in the integral de-
note the dimensionality of the integration. In order to ob-
tain a meaningful result to be compared with experimental
data, typically isolation cuts are applied on the outgoing
particles, which may also serve the purpose of keeping the
integral finite. A typical criterion for example is to iden-
tify outgoing partons with jets and thus apply jet definition
cuts on the partons such that they are all well separated in
phase space. Anyway, the cuts will not be stated explicitly
in the integral, but they are understood implicitly with the
integration, including suitable generalisations in d dimen-
sions, where necessary. Thus, the integration of the Born
level cross section can directly be carried out in four space-
time dimensions, as indicated in the equation.

In view of the dipole subtraction formulae, it is useful
to introduce at this point bras and kets ,,,(1,...,m’'| and
[1,...,m');m. They denote states of m final state partons
partons labeled by 1 to m’ and are vectors in colour and
helicity space. Introducing, in a similar fashion, vectors for
the spins and colours, matrix elements thus can be written
as

M5 = (4 ey, .

sml) Ly, MY

(4)

Therefore, in this notation, the matrix element squared,
summed over final state colours and spins reads

|IMon? = 1, .. M) (5)

The NLO part of the cross section consists of two con-
tributions, each of which increases the order of ag. First,
there are emissions of an additional parton, i.e. real correc-
tions, denoted by d @R, Second, there are virtual (one-
loop) corrections to the Born matrix element, here denoted
by d¥V. Thus,

O_NLO:/d(d)O_NLO:/ d(d)O,R+/ 4DV
m—+1 m
(6)

The two integrals on the right-hand side of (6) are sepa-
rately infrared divergent in four dimensions, and are there-
fore taken in d dimensions. For the real correction, the
divergences arise when the additional parton becomes soft
or collinear w.r.t. some other parton, leading to on-shell
propagators in the matrix element. For the virtual correc-
tion, the divergence comes with the integration over the
unrestricted loop momentum, such that again a propaga-
tor goes on-shell. As already stated in the introduction,
now the celebrated theorem of Kinoshita, Lee and Nauen-
berg [29, 30] comes to help and guarantees an exact can-
cellation of two divergent contributions, thus keeping their
sum finite?. Setting d = 4 + 2¢ in the following, the diver-
gences will manifest themselves in double and single poles,

.,Cm|®m<51,...

,m|l,...

2 In fact, this is only guaranteed for infrared-safe quantities.
More specifically, if F}") defines jets in terms of the momenta
of an m-parton final state (taken at Born level), infrared safety
demands that F}erl) — F}m) in cases where the m+ 1- and
m-parton configurations become kinematically degenerate.
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i.e. as 1/€2 and 1/¢, respectively. In principle, cancellation
of the poles then solves the problem; in practice, however,
the direct applicability of the equations above to real phys-
ical processes is limited since analytical integration over
a multi-particle phase space in d dimensions with cuts in
many cases is beyond current abilities.

Therefore, a detour has to be taken. The idea is to
construct a subtraction term for the real emission contri-
bution, which encodes all of its infrared divergences, but
can analytically be integrated over in d dimensions. In this
way the infrared pole structure of the real part with its
1/€ and 1/€? poles is exhibited and cancels the correspond-
ing virtual contributions. Subtracting this term from the
real emission contribution and adding it to the virtual cor-
rections then eliminates the infrared divergences in both
parts. The subtracted real matrix element squared then
is finite and thus its full (m + 1)-particle phase space can
safely be integrated over in four dimensions. In this way,
the subtraction term aims at an infrared regularisation of
the two contributions at integrand level.

O,NLO:/ d(d)a_R_/ d(d)O_A+/ 4D oA
m+1 m+1 m+1

+/ d@gV

= [d<4>aR—d<4>aA} +/

m—+1 m—+1
[ aar G

The catch of the subtraction method now is that the sub-
traction terms can be obtained from the Born terms in
a straightforward way and that only the phase space inte-
gral of the extra particle has to be taken in d dimensions,
while the phase space for the remaining m particles can be
taken in four dimensions. This is similar to the way, the
loop terms are evaluated. There, only the loop integration
is performed in d dimensions, whereas the phase space of
the outgoing particles is done in four dimensions. There-
fore, the final structure reads

SNLO _ / [d(4)O,R _ d(4)O_A:|
m—+1

—|—/ [/ d(d)av+/d(d)UA] . (8)
m loop 1 e=0

Both integrands now are finite, allowing all integrations
to be performed numerically. In contrast to some other
regularisation methods (like, e.g., phase space slicing) the
subtraction method does not rely on any approximation
and does not introduces any ambiguous and/or unphysical
cut-off scales etc., as long as the integration of d DA can
exactly and analytically be performed.

In [1,2] a general expression for d( has been pre-
sented, called the dipole factorisation formula, allowing to
write

d@ A

d)oA

d(d)O'A = Z d(4)UB ® d(d)v:iipole (9)

dipoles
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such that, symbolically,

/+1 a9t =} / d<4>aB®/1d(d>Vdipole

dipoles

:/ [d<4>a3®1} ,

(10)
where

=3 /d<d>vdipole. (11)

dipoles 1

Here the sum of the dipole terms Vgipole contains all soft
and collinear divergences of the real emission pattern. This
factorisation formula is suited for any process with mass-
less partons, and fulfills all the requirements mentioned
above. An extension to massive partons has been presented
in [41].

However, as already mentioned in the introduction, in
this publication only the massless case will be considered.
In order to provide a self-contained description, all neces-
sary analytic expressions will be listed in this publication.

2.2 Generalisation to hadronic initial states

The cross sections discussed so far were given for point-
like initial states. For cross sections in hadron collisions,
however, the differential cross sections above must be con-
voluted with parton distribution functions (PDFs):

! 2
) = d a )
o(p.p') ;b /0 nfa (0, 1)

1
X / dn' o (', 1) [o2 (np, ') + N (np, ', 1id)]
0
(12)

Here the subscripts on the cross section denote the flavours
of the incoming partons; for the total cross section a sum
over them has to be performed. For the NLO part, now
the higher-order corrections residing in the PDF's must be
taken care of. This is done by supplementing the NLO part
with a collinear subtraction term do}, such that

O'gIbLO (pavpbvp’%) :/+1
m

+/ d(d)UZ’b(pa,pb)Jr/ dD6S (pa,py, p2) -
(13)

d @ Utl;{b (pa y Pb)

This new term contains collinear singularities, incorpo-
rated in 1/e-terms and reads

1 1
(@) C oy _ _as 1 Z/ / _
d Oab (pa7pb7/J“F) om F(l—é) ~ Jo dz 0 dz

X {d(4)a§d(zpa, Zpy)
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2
X |:5bd5(1—2) <—l <4Z/;
F

it (4 (Y sz
(14)

>€ Pac(2) + KEC'S'(z)>

The collinear subtraction term is factorisation-scale and
scheme dependent. This scheme dependence resides in the
terms K-S which, for the common MS-scheme vanish, i.e.
in this scheme all terms K-S = 0. However, this scheme
dependence cancels similar terms in the PDFs such that,
taken together, the full hadronic cross section again is
scheme-independent.

In the case of incoming hadrons, the subtraction
method is applied to oNFO (pa, Db, u%) as described before,
with the only difference that in this case the singularities of
dol\lfb only cancel in the sum

/ [/ d(dh% +/ d(d)ofb + d(d)asb
m loop 1

2.3 Observable-independent formulation
of the subtraction method

(15)
e=0

Up to now, the do denoted cross sections in a broad sense.
To be a bit more specific consider the following expres-
sion for a cross section at Born-level and the corresponding
next-to leading order expression:

2
ULO:/dQ(m)(pl,--- 7pm) ‘M(m)(ph ,pm)

xF(m)(pl,... , Pm.)

UNLO:/dQ(m+1)(p1,... ,pm+1)
(m+1) % (m+1)
x (MO )| F D )

(m) (m) 2
+/d@m (p1,--- ,pm)’Vm (P1,--- sPm)

XF(m)(ph 7pm)7 (16)
where d®(™ represents an n-particle phase space element,
and M) M+ and V™) are the LO matrix element,
the NLO real matrix element and the NLO virtual correc-
tion matrix element, respectively. F(™) is a function that de-
fines a cross section or an observable in terms of the n-parton
momentum configuration. In general, the function F' may
contain f-functions (to define cuts and corresponding total
cross sections), d-functions (defining differential cross sec-
tions), kinematic factors or any combination of these.

However arbitrary this sounds, there is a formal re-
quirement on this function F', namely that in the soft and
collinear limits, i.e. for cases where one parton becomes
collinear w.r.t. another one or where one parton becomes
soft, the function F(™+1) reduces to F(™):

F(m+1)(p17' s
F'" (py, ...

apm+1)_>
A—0

yPi = AQ7 s
7pm+l) for
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F(m+1)(pl7"' yDiy v 3 Djye e 7pm+1) —
F™(py,....p,... \pmy1) for p;—zp,pj— (z—1)p
F(m)(pl,...,pm)—>0 for p;-p; —0. (17)

The first two conditions define infrared-safe observables
— to phrase it intuitively this means that such infrared-
safe quantities must not be altered by additional soft or
collinear activity. The last condition above is required to
properly define the Born cross section.

Applying the subtraction method to the NLO-part
of (16) results in

2
oNLO _ / de(m+1) [‘M(m+1)(p1, e apm+1)’

X FU D (py, o pmgr) = Y Dijklpr, -
k£t

X F(m)(ph... s Dijs Dk - - ,pm+1)] +/d¢(m)

apm+1)

x [V (py, ... ,pm)’Q—i- (/1 d[p|Dij .k (p1,--- ,pm+1)>

X F™ (1, ... pm), (18)
where d[p] is the phase space element for the 1-parton
phase space.

In order to have an identity between the subtracted
terms and the added term, both the (m+ 1)-parton contri-
bution and the m-parton contribution have to be subjected
to the same function F'. To be able to perform the integra-
tion over the one-parton phase space independent of the
observable this function therefore must be F(™). In the
case of the (m + 1)-parton contribution F (™) is applied to
the m-parton configuration, generated by corresponding
mapping given in the prescription of the dipole function.

2.4 The dipole subtraction functions

The universality of the soft and collinear limits of QCD
matrix elements are the basis for the construction of the
dipole subtraction terms. In both limits any matrix elem-
ent squared for m + 1-partons factorizes into an m-parton
matrix element times a (singular) factor.

To be specific, consider first the soft limit of the matrix
element, given by the momentum p; of parton j becoming
soft, i.e. pf = Ag" with A — 0. Then, employing

DiPk
(riq)(Prq)

_ DiPk T DiPk 7 (1 9)

(Pi@)[(pi +pr)al  [(pi +pr)a)(Pra)

the soft limit reads

mt1{ly. gy om 411 m D) —
1 . .
—ﬁ&r/f as Z m<1,...,z,...,m+1‘
i,k
pepi Li - T

‘m’l,...,k,...,,m+1>m, (20)
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In a similar way the limit where two partons ¢ and j be-
come collinear is defined through p; — (1 —2)/zp;. In this
limit the (m -+ 1) parton matrix element can be rewritten
as

ma1{l,co m 1L, mA D — .p‘47r,u2€o¢s
ij

x <1,...,m+1 By iz kL) 1,...,m+1> ,
(21)

where, again, the P(ij),i (z, k1) are the well-known Altarel-
li-Parisi splitting functions.

Then, the actual dipole function generating the limit,
where one of the partons ¢, j of a m + 1-parton configura-
tion becomes soft or both partons become collinear to each
other, symbolically has the following structure:

Dij,k:m<17"'7{j7"'7]’%7'"7m||17"'7i37"'7];7"'7m>m
® Vijk, (22)
with the non-singular m-parton matrix element

m{- -] -+ -)m and the operator V;; i, describing the split-
ting of the parton (ij). Here, and in the following, the
splitting kernels V;; ; are matrices in the helicity space of
the emitter. The dipole function also involves a third par-
ton as ‘spectator’. This parton in fact is identical with the
colour partner k in the soft limit, (20). The form of the
subtraction means that kinematically, 3 — 2 mappings are
considered

Pis Dj» Pk = Dij, Pk 5 (23)
such that all involved partons are allowed to remain on
their mass shells.

In general the splitting parton (called ‘emitter’) and the
spectator can be both, initial and final state particles. This
discriminates four different types of dipole functions, dis-
played in Fig. 1.

The full subtraction term for any matrix element with
(m+ 1) partons in the final state is given by the sum of all
possible dipole functions. For the most general case with
two partons in the initial state, therefore

Z ,Dij7k+ { Z’DZ +ZDZi+ZDai’b
ki 7] k#i i
+(a+ b)}] dg(m+1)

do® =

(24)

In the following the explicit expressions for the dipole
functions will be listed. The corresponding one-parton
phase space integrated subtraction terms are discussed
in Sect. 2.5.

2.4.1 Final state emitters with final state spectators

The dipole contribution D;; 3, for the singular limit p; - p; —
0, where all three involved partons are in the final state, is



Viik

P;

Fig. 1. Classification of dipole functions

given by
Dy —
ij,k\P1y- - yPm+1) = —
! * 2p; - pj
- - Ty T,
xm<L“.Jﬁu.wwu,m+l—4%TimG
ij

(25)

1., k... ,m+1> .

It is obtained from an (m 4 1)-parton matrix element by
replacing the partons ¢ and j with a single parton ¢j, the
emitter, and the parton k is replaced by k, the spectator.
The flavours of emitter and spectator are assigned as fol-
lows: The spectator k remains unchanged, and the emitter
ij is defined by the splitting process ij — i+ j. The prod-
uct of colour charges in the numerator of (25) introduces an
extra colour correlation in the m-parton matrix element.

The kinematics of the splitting are described by the fol-
lowing variables

Pipj 5= PiPk
=
PiDj + PPk + Prpi DjPk + Dibk

—1-3.

(26)

Yij k =

and to obtain the momenta ij and k in the m-parton con-
figuration the following map is being used:

1 _ Yij,k

Su oA
— = pl 4t — (27
T AR A E— 27)

P =

Obviously, four-momentum conservation is exactly ful-
filled, i.e.

Py +py +pl =D+ Py (28)
and all partons remain on their mass shell,
P =p] =pi =05 =P =0. (29)

The splitting matrices, which are related to the d-
dimensional Altarelli-Parisi splitting functions, depend on
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the spin indices of the emitter parton. For the case of
a quark splitting (using helicity indices s and s’) the kernel
is a matrix in helicity space, whereas for gluon splittings (to
a quark—anti-quark pair or to gluons), the splitting matri-
ces are given by Lorentz tensors. This yields

<5|‘/;1i9j7k(2i; yij,k)|5/> =

2
1= Zi(1 = yije)
(1 Vi q5,6(Zi3 Yijp) [v) =

8ru*agCr [ - (1+5¢)—€(1—5¢)] Oss s

8mu*asTr {—g’“’ - (Zips — Zpj )" (Zips — Z}'Pj)y] ,
Dipj

(1l Vigig; 1 (Zi3 yi 1) V) = 167p* s Ca

X [—g’“’ ( 1 + 1 —2)
1-zZi(1=yije)  1-%(1—yijk)

+(1—¢) 2

iDj

(Zipi — Zipj )" (Zipi — Z}'Pj)"] : (30)
respectively. The dipole terms given in this section are suf-
ficient for the subtraction procedure in the case of non-
hadronic initial states such as e~eT-annihilation.

2.4.2 Final state emitters with initial state spectators

For the case of an emitting final state parton, the presence
of an initial state spectator results in additional contribu-
tions to the singular limit p; - p; — 0 of the full m + 1-parton
matrix element. The corresponding dipole terms in this
case are given by

1 1
DE ... ; o)==
ij (p1, y Pm+1; Da, ) 2p; Dj Tija
- T .T..
X <1,...,ij,...,m—|—1;d,... %ij
m,a ij
1,...,ij, ,m+La,.>
m,a
(31)
The kinematic variables now read
Dipj ~ DiPa -
Tiia=1— Zi = =1-2
b (pi+p)pa’”" PiPa+DiDa ?
(32)

and the momenta of the m-parton configuration are ob-
tained by the map
Py = Tija Dy Dy = D; +1f —(1—zija)ph.  (33)
Again, four-momentum conservation is trivially fulfilled
and the partons remain massless.
The corresponding splitting functions used in (31) read
(s[v

'y (Zi Tija)ls) = 8mp*asCr
2

—(1 Zi) —€(1—2; 583’7
1_2i+(1_xij,a) ( +Z) 6( Z)
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(Wl Virg (Zis wija)lv) = 8mp*asTh

-
Dipj

(Vg g, (Zis wija) V) = 16mp*asCa

(Zipi — Zip; )M (Zipi — Z"}'Pj)y} )

1
| —ghv _ + _ -2
[ g (1—21'4—(1—1’1']‘,(1) 1= Z+(1—2ija) )

-2 (34)

iDj

(Zipi — Zip;)! (Zipi — Z"}Pj)"} .

2.4.3 Initial state emitters with final state spectators

The next type of dipole function now covers initial state
singularities p, - p; — 0 with final state spectators, given by

ai 1 1
Dk (plv'-' 7pm+l;pa7-'-):_2p “Di Tik
7 ~ T 'Tai 1
X <1,...,k,...,m—|—1;ai,... ]&‘72\[;1
1,...,l~c,...,m—|—1;di,...> . (35)

The parton ai, which enters into the m-parton matrix
element on the r.h.s. of (35) is given by the splitting of the
initial state parton a — ai + i. The relevant kinematic vari-
ables in this case are

PiPk
(P +pi)pa’

DiPa

PiPa + PkPa

:1_uk7

(36)

Tik,a

and the momenta for the m-parton configuration are ob-
tained by

ﬁgi = Tik,a pﬁ 7}3Z = p;: —|—pf — (1 — J:ik,a)pg . (37)
The splitting matrices V{ in (35) are
(s|V, 229 (g5 2ip,0)|8') = 8Tp* asCr
X | ——m8 — (1 . —e(l—x: 5
|:1 _$ik,a+Ui ( +xlk’a) 6( xlk:‘l)] ss’

(s|V29% (ws; i) | 8") = 8mp* ag O
X [1—€—2xi (1 — Tik,a)] Ossr 5
(| V329 (uy; 21,0 V) = 8T as TR

2uuy 1 — x; ; H
e e Lt ()
DPiPk  Tik,a U; Uk

o (Pi_pe)
u; U ’
(WIVZ9% (uis @iga) V) = 167p* s Ca
1
) (P
X{ g (1_xik,a+ui + Tik,a(1 — i, )>

(1t L Tk (ﬁ_p_k>" (p__p_kﬂ .
DPiPk  ZTik,a U; Uk U; Uk

(38)
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The three dipole types discussed up to now (FF, IF, FI)
are sufficient to construct the subtraction term do? for
processes with exactly one initial state parton, i.e. DIS con-
figurations.

2.4.4 Initial state emitters with initial state spectators

The remaining dipole function, only required by processes
with two initial state partons, covers the case where both,
the emitter and the spectator, are initial state particles,

) 1 1
DY (p1,. .. Pmt1;Pas Db) = —
(s Prct1i Pa o) 2Da - Pi Tiab
~ e T T .
x <1 ,m+1;ai,b‘%va“b
T2,
m,ab ai

(39)

1,... ,m:l—l;c;i,b>
m,ab

To describe the splitting, the following kinematic variables
are used

PaPb

~ DaDi
V= ——.

40
DPaPb ( )

Li,ab = 1-
The construction of the m-parton kinematics for this
dipoles differs from the other three cases. The reason is
that in this case the emitter and the spectator are fixed
to remain along the beam axis. Therefore all final state
momenta (not only momenta of QCD partons) are trans-
formed according to the map

1551' = Tj,ab PZ»
g 20 (K4 K)

2pj~K
R T EWE

(K +EK)*+ K—f(*‘ . (41)

2

where

KV =pl+p) —pf andK“:ﬁZi+p§. (42)

The momentum of the spectator p, remains unchanged.
The transformation above can also be interpreted as apply-
ing a rotation and a boost turning initial state momenta
back to the beam axis after a mapping similar to the first
three cases of dipole functions. Indeed it can be shown that
the transformation of final state momenta in (41) is just
a Lorentz transformation.
However, in this case, the splitting matrices read

<3|Vq“gi’b(:r¢,ab)|s'> = 8mp*asCr
2
X [1_7“ —(1 +xi,ab) —e(l1- $i,ab) Oss!

(s|V9a9ib (2, p)|s") = 8mp*asTr

X [1—€—2x; ap(1 — 2iap)] Oss
(V9290 (555 ip, o) V) = 8T s O
2 1-mia

X |:_ guyxi,ab + =

ViPi *Pb  Tiab

X (pi— Oipr)" (pi —vipi)” |,
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(V9920 (555 i 0)[v) = 167> as Ca

.
x |—g" [ =22 g (1= 2ap)
1- Ti,ab

1 1- Li,ab
ViPi * Pb

+(1—e¢) (pi — vipr)" (pi—f)ipk)y] .

(43)

Ti,ab

2.5 Integrated dipole terms
2.5.1 Phase space factorisation

In order to combine the poles of the subtraction function
and the virtual matrix element the subtraction function
has to be integrated analytically over the one-parton phase
space of the respective splitting. The rules for the momen-
tum mapping from 3 to 2 parton phase spaces have been
constructed in Sects. 2.4.1-2.4.4 such that the correspond-
ing phase space exactly factorizes.

As an example, and in order to fix the notation, the
case of a final-final dipole, D;; 1, will be discussed in the
following. There, the three-particle phase space for the par-
tons i, j and k (all other partons are not affected by the
splitting and will be omitted) in d dimensions is given
by

dé(ps, pj, pr; Q) =

ddp
Tﬁlﬁﬁ(pz)(?”)d
x 8D(Q —pi —p; — pr)-

This can be factorized in terms of the mapped momenta,
such that

do(pi, pj, pr; Q) = do(Pij, Pr; Q) [dpi(Dis, Pr)]
(45)

(44)

where [dp; (Pij, Dr)|, written in terms of the kinematic vari-
ables defined in Sect. 2.4.1, reads

(2ﬁijﬁk)1_€ dQ(d—3)
1672 (2m)l—2¢
x 0(Zi(1 = 2:))0(yij e (1 — Yij k)
X (Z(1=2)) " (1= yijn) > v;% -
(46)

[dpi(Dij, Pr)] = dz; dyij k

Within the dipole function only the splitting function itself
depends on the variables Z; and y;; . Thus, the integra-
tion in d dimensions can be performed once and for all,
independent of the specific scattering process under con-
sideration. The result of the integration for each splitting
type can be expanded as a Laurent series including double
poles (~ 1/€?), single poles (~ 1/¢), and finite terms (~ €°).
Further terms of O(¢) are unimportant here and will be left
out.

All results for the final-final and for all other dipole
types can be found in [1, 2].

T. Gleisberg, F. Krauss: Automating dipole subtraction for QCD NLO calculations

2.5.2 Full result

Having at hand the integrals for each dipole function, all
individual dipoles present in a specific process can be col-
lected to yield the overall infrared divergence of the sub-
traction term. Then, the starting point for the calculation
of jet cross sections in the dipole subtraction formalism
reads

NLO R 0
N0 = / [ 1ytem0 = A0 ryjemo)
{m+1} m+1
[T b+ X [arty|
m {m} {m+1} 1 e=0
(47)

where ) {m+1} denotes the sum over all parton-level pro-
cesses. However, the important point here is to exactly
cancel the poles of the corresponding individual one-loop
parton-level processes, which is done exclusively for each
momentum and flavour constellation. Therefore, for each
specific m-parton process at NLO only a selection of dipole
functions related to (m+ 1)-parton processes contributes
to the cancellation of the virtual divergences. In [1, 2] it has
been shown that this amounts to an effective reordering of
phase space integrals and sums over parton configurations,
such that

oNLO _

R A
§ /+1 [da{m+1}\e:o—d0{m+1}|e:o
{m41} 7™

—|—Z/ [da}fm}—kdaf{&m} .
{m}’m -

where daAm} is the integrated dipole term that collects the
integrals of all dipole functions and thus cancels the singu-
larities of da}fm}. It is explicitly given by

(48)

dof,y = [do?m} X I(e)} : (49)

where dafm} x I(€) is a shorthand for the following proced-

ure: Write down the expression for daBm , and replace the
corresponding squared Born-level matrix element

IMimy)? = m(1, ... m[1, .. m),, (50)

with
m(l, ...

using the insertion operator I(e) as defined below.

Finally, the full result for the integrated dipole term
and the collinear counterterm as defined in (14) for the
most general case with hadronic initial states reads

,m[I(e)|1,. .. (51)

7m>TYL7

o5y (Pas Pb) + A0 Gy (Pas o, ) = [ty (pay py) X 1(€)]
1
+Z/ dw{ (K“’“ (z) +P** (frpa,w;u%)>
; J0

x de’/b(xpmpb)}
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1
—|—Z/ d:r[(Kb’bl(:r)+Pb’b/(1’pb,x;u%))
p 70

X daf’b, (Pa, pr)] , (52)

where a and b again specify the initial state partons. The
summation over a’ and b’ runs over all parton flavours, i.e.
it includes gluons, quarks and anti-quarks occurring in the
PDF.

The insertion operator I reads

I({p}ie) =~ ZT2

4
: ( m )
2p1ps
where the indices I and J run over initial and final state

partons. The universal singular functions V;(e) depend
merely on the flavour of I and are given by

ZT[ T,

I£J

(53)

1 3 2
Vq(e) =Cf |:€—2+2—6+5—7+0(6):|

Cha 11 2 1 50 2
Vg(G) = 6_2 + <€OA - gTRNf> E +CA (? - 7)
16
—TRNf?—FO(G), (54)

with N being the number of contributing quark flavours.
The complete singular structure in (52) is contained
in [doB (pa,pp) % I(€)] and the sum [doB, (pa, pp) x I(€)] +
doY, (pa,py) must be finite for € — 0.
The finite insertion operators K and P are given by

a,a’ _Ozs raa’ aa’ 'Yz
K (a:)—%{K (z) — K. +6 ZT T,
1 Ty -Tor =0 o
X l(l_a):—é(l—x) T O R (g )},
(55)
and
poe’ p}; x; P ——P‘“L T;-Tyln
({p}; @ px) o ngb 1 1s 2pap1
(56)

Note that here the index 7 runs over ﬁ_nall state~par/tons
only. The flavour-dependent functions K (z), K™% (z),
and P“’“l(a:) are defined in Appendix A. As already
men:cioned, the factorisation-scheme dependent function
K% () vanishes in the commonly used MS-scheme.

To obtain the final result for processes with no ini-
tial state partons only the I-term needs to be considered
in (52). For processes with one initial state parton only, the
result is obtained by using the I-term and one of the two in-
tegrals over K and P only, while omitting the contribution
of K©a' ().
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2.6 Freedom in the definition of dipole terms

As stressed before, the singular limits of the dipole func-
tions are fixed by the requirement to cancel the sin-
gularities of the real correction matrix element. How-
ever, away from this limit there is some freedom for
modifications.

One possible modification has been presented in [22],
where a parameter « has been introduced which cuts
off a dipole function for phase space regions far enough
away from the corresponding singularity. Its main advan-
tage lies in a significant reduction of the average num-
ber of dipoles terms to be calculated for each phase space
point of the (m+ 1)-parton phase space of the real cor-
rection term. This constitutes an important alleviation of
the calculational burden, since the total number of dipole
terms grows approximately as m3. The a-modified sub-
traction terms also allow nontrivial checks of the imple-
mentation, since the total result must be independent
of a.

The a-modified dipole functions have been defined as
follows:

i = Dij k0 —yijk) »
D’,‘? = ’ijﬂ(a -1 —|—Iliij,a) s
D8t = DEY(a —uy)

Dbt — DY — ;) . (57)
They will be employed later, in the implementation pre-
sented in this paper. Of course, such a redefinition of the
splitting kernels also requires a recalculation of their inte-
grals. The new a-dependent insertion operators I and K
have been presented in [22].

Another simple modification is the addition of finite
terms to the splitting functions, such as

!
ik = Vijk T Yijkx O

V/QZV-Q- (1—.’[:ija)*0,
/az _Vaz_'_ul*cr
v"“" Va4 5% C. (58)

The constant C' directly ends up as a finite term in the in-
tegral of the splitting function and thus it can be easily
included in the insertion operators of I and K, too. This
again allows checks of the implementation, but it can also
be employed to improve the numerical behaviour of the
phase space integrals and to reduce the number of negative
events.

3 Implementation in AMEGIC++

The Catani-Seymour dipole subtraction terms have been
implemented in full generality into the automatic ma-
trix element generator AMEGICH+, based on it’s version
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2.0 [53].3 In particular this translates into AMEGIC++
being able to automatically generate all relevant parts of
the NLO matrix element within the subtraction method
except for the virtual matrix element. It can be applied
to any process with massless partons for which the real
correction ME can be generated, an extension to allow
also for massive particles is foreseen. This includes stan-
dard model processes as well as implemented extensions,
as long as there are no new strongly interacting par-
ticles involved. For standard model processes the boundary
is currently at about six—eight partons (initial and final
state).

The new implementation aimed at a maximal reuse of
already developed automated methods of amplitude gen-
eration and process management. Therefore, first a brief
overview over the relevant parts of the code are given
before the new implementation is described in some
detail.

3.1 ME generation
3.1.1 Amplitudes

The matrix element evaluation in the C++-code
AMEGICH+ is based on the evaluation of Feynman ampli-
tudes using a helicity method based on the developments
in [58-60]. The fundamental idea of this method is to in-
troduce a helicity basis, in terms of which all physical
spinors can be expressed. This allows to compute each
amplitude directly as a complex function of physical mo-
menta and helicity /spin states instead of computing traces
of spinor products and y-matrices for squared amplitudes.
The colour within any amplitude is treated separately, i.e.
in the first step all colour factors (the SU(3) structure con-
stants f°¢ and tg;) corresponding to the k-th amplitude
Ay are collected in an array Cy.
Squared matrix elements can thus be written as

M2 =37 [(4:4) (ci-cf)] (59)
3
and hence a colour matrix of complex numbers

is generated once for each process. In an initialisation run,
AMEGIC+H+ generates all formulae for the amplitude cal-
culation of the user-specified parton level processes in-
cluding the colour matrix ¢; ; (using a set of replacement
rules for the colour algebra), it simplifies the expressions
for the helicity amplitudes by identifying and factoring
out common pieces and finally stores everything in C++
libraries.

3 A brief description of AMEGIC++ within the SHERPA
framework can be found in [54], whereas a full documentation
of the (partly obsolete) version 1.0 is given in [3] with some
extensions and results discussed in [55—57]. An update on the
helicity formalism as it is used in the current version is docu-
mented in [55].
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3.1.2 Process structure and organisation

Since typically many parton level processes contribute to
jet cross section calculations, usually a long list of pro-
cesses needs to be computed. The corresponding structure
in AMEGIC++ is as follows:

— Any parton level process is represented by the class
Single_Process,

— Process_Group contains a (possibly recursive) list of
such processes or groups of processes.

All parton level processes sharing a specific common set
of properties are grouped together in two or three lev-
els of groups. In many cases there are subprocesses con-
tributing to the same jet cross section which are very simi-
lar. Therefore AMEGIC++ applies a procedure to iden-
tify such processes in order to save computer resources
and accelerate the calculation. The following checks are
performed:

— Direct comparison of amplitudes: check for processes
that have identical graphs, where all involved particles
have the same masses, widths and underly the same
interactions (with coupling constants that differ at
most in a constant factor).

Example: QCD processes that differ in quark flavours
only.

— Numerical comparisons: check if the numerical result
for a squared matrix element at a given phase space
point is the same.

Example: a quark is replaced by an anti-quark w.r.t. to
the other process.

For a set of processes that can be identified by this it is
enough to compute one to know them all. In such a case,
the corresponding matrix element squared is calculated
only once and then recycled by the other processes.

3.2 Generation of CS dipole terms
3.2.1 Colour and spin correlations

The starting point of the Catani—-Seymour algorithm is
detailed in (48) and (49), supplemented with expressions
like the one in (22) for the individual dipole subtrac-
tion terms. The latter states that for any given process
the Catani-Seymour dipole subtraction term for the real
(m+1)-parton correction term consists of the corres-
ponding m-parton matrix element at Born level plus
an additional operator that acts on colour and spin
space. For the latter, only the limit € — 0 needs to be
considered.

— Colour operator:
In all four dipoles, (25), (31), (35), and (39) colour-
correlated tree-amplitudes of the form
IMEEP = (L, oIy Tall, . ) (61)
occur, where 4 labels the emitter and k the spectator.
Denoting the colour indices of the external legs of the
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tree process explicitly by a; and b;, this can be cast
into

(190 ]
X6a1b1 “'Tc*bi ackbk ...0

aq
kPR mbmy

[t =

ambm

x |18, %
(62)

where T¢, =i £, if the associated particle is a gluon,

and T3 = ¢;, if the associated particle is a quark. In
other Words the colour structure for dipole terms can
be generated by adding a gluon connecting the emit-
ter with the spectator as illustrated in Fig. 2. The
colour matrix for a dipole term is recomputed after
this insertion using the available evaluation tool in
AMEGIC++.

— Spin space:
For a quark splitting all spin-matrices are just pro-
portional to .., translating the quark spin to be ex-
actly the same as for the Born-level m-parton matrix
element.
For the case of a gluon splitting, however, there are non-
trivial correlation matrices. All of them can be cast into
the generic form

VI = (ulVIv) oc —g"" +

Fig. 2. Construction of the colour matrix for dipole terms:
a gluon connects emitter and the spectator

Table 1. Values for the functions defined in (6

511

where B and p are functions of the kinematic variables

and momenta of the corresponding splitting. Their

values are listed in Table 1.

The structure of the splitting tensor as given in (63)
is very similar to the polarisation sum for massive vector
bosons in unitary gauge, except for the factor B and the
fact that p can be timelike or spacelike. This analogy can be
used to replace the tensor by a polarisation sum, i.e.

o+ =X EKGB EEB) - (64

Here the summation index A runs over four values, +, —, [
and s. £ is a sign that cannot be absorbed into the polari-
sation vectors €). For a gauge boson with momentum

pHt = <ﬁ0, 7’| sin 6 cos ¢, | 7| sin 0 sin ¢, | 7| c059> ,
(65)

the polarisation vectors are defined as

el 7(0 ,cos 6 cos ¢ Fisin ¢, cosf sin ¢+ i cos @,

x —sind),

1 ~
67: <|p|7p0|ﬂ|>

1-B
“=\gaz pgp ; (66)
and the sign factors are given by
-1 if p?°<0
+ 1
:1 =
¢ ¢ {-1-1 if p>>0"’
+1 if p*<0
&=<{-1 if p>>0;B>1. (67)
+1 if p2>0;B<1

3). The variables are defined in the corresponding

Sects. 2.4.1-2.4.4. The dipole type FF refers to the case where emitter and spectator are final state
partons, IF refers to the case where the emitter is an initial state parton and the spectator a final

state parton, etc.

dipole type splitting: pH B
FF 9—4qq Ziv) —5pf 1/(44:5)
1 1 -
999 (2_ 1-2(1-yije) 1*%(1*1/1‘]’,0) /(2%:5)
FI 9—4qq Zivf —5pf 1/(44:5)
1 1 .
999 (2 T 1-Z+(-wija) 1*%+(1*Ii1,u)) /(2%%)
m
IF g p_f P 1.2 1 )
9—4qq w g —1%ik,a/ (1 —Tik,a)
(3
g—499 % (1— m —wz‘k,a(l_ﬂfik,a)) wik,a/(l_mik,a)
11 9—qq P —wipl, =1l /(1 Tiap)
g—499 —% (m"’(l_wik,a)) mzzk,a/(l_mik,a)
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In order to calculate the dipole matrix element, the polar-
isation vectors of the splitting gluon are then replaced by
the ones defined above.

3.2.2 Organisation and process management

To construct all dipole functions necessary to cancel the in-
frared divergencies of a given parton level real-correction
process firstly all pairs of partons have to be determined
that might emerge from the splitting of an emitter par-
ton (initial state partons are charge conjugated for this
procedure). This might be any quark (or anti-quark) and
a gluon, two gluons or a quark and an anti-quark of the
same flavour. Secondly, each of those pairs is combined
with any possible third parton (acting as spectator) to de-
fine all possible dipole functions.
Any individual dipole function is thus specified by:

1. type (the specific combination of initial and final state

for emitter and spectator),

the specific flavours involved in the splitting, and

3. the corresponding m-parton matrix element and its
emitter and spectator particles.

o

In order to construct the individual dipole functions,
given by

D=A;CL A F(...). (68)

the following ingredients are necessary:

1. A rule to map the (m + 1)-parton phase space onto an
m-parton phase space.

2. The corresponding splitting function for the dipole.
This consists of two parts, a scalar function F(...) of
the kinematic variables of the splitting and a spin cor-
relation matrix. As discussed above, for quark split-
tings the matrix is simply 4., for gluon splitting the
matrix is represented by an outer product of pseudo-
polarisation vectors, which are also functions of the
kinematic variables of the splitting.

3. The colour matrix C’l{j, respecting the extra colour cor-
relation.

4. Amplitudes A; of the corresponding m-parton matrix
elements. For gluon splitting cases these amplitudes
have to be calculated replacing polarisation vectors of
the splitting gluon by the pseudo-polarisation vectors
introduced above.

The calculation of any dipole function is organized
in the class Single_DipoleTerm, each instance of this
class representing one dipole. This class controls the in-
gredients for the calculation: Firstly there is a Born-level
m-parton matrix element of the original AMEGIC++
implementation, just extended such that it includes the
additional colour correlation. Secondly there is a class
Dipole_Splitting_Base that completely organizes the
splitting function itself. Specified by the type of the dipole
(initial and final states for emitter and spectator) and
the type of the splitting (determined by the contributing
flavours) it takes care of the mapping between the m +
1-parton and the m-parton phase spaces and of the calcu-
lation of the splitting function (including the polarisation
vectors to encode the spin correlation).
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Above that the class Single_Real_Correction han-
dles all contributions to an infrared regularized parton
level process. This consists firstly of an (m+ 1)-parton
tree level matrix element in the original AMEGIC++ im-
plementation. Secondly it contains a list of single dipole
functions, simply determined by looping over all par-
tons and selecting valid dipole configurations. The classes
Single_Real_Correction and Single_Process are de-
rived from a common base class in a way such that the
class Process_Group can be reused to also organize the
infrared regularized parton level process in groups of com-
mon features up to all subprocesses contributing to a jet
cross section.

Similarly to the case of tree level processes in
AMEGIC++, also here a mapping of parton level pro-
cesses that lead to identical or proportional results can be
used to speed up the calculation and save computer re-
sources. To this end, the following automatic identification
strategies are implemented:

— If two real correction processes can be mapped (using
strategies described in Sect. 3.1.2) then also the whole
Single_Real_Correctionis mapped.

— For single dipole terms a unique identification algo-
rithm proceeds as follows: Two terms can be mapped
if the included m-parton process can be mapped and
if the three particle labels (numbering the the exter-
nal particles of the real correction process) to identify
a dipole are identical.

— Many of the born matrix elements within the dipole
terms will be identical. However, since different dipoles
require different momentum mappings they have to
be recalculated. Only the calculation routine can be
shared.

3.3 Generation of the finite part
of integrated dipole terms

3.3.1 Analytical structure of the full result

The starting point of the discussion of the finite pieces
of the integrated dipole terms is (52), where now the
phase space integration as well as the summation and
integration over the incoming parton flavours and mo-
menta is made explicit. Then, terms inside the m-parton
integral come from subtraction terms integrated over
the phase space of the extra parton emission and from
the collinear counterterm for the general case of a NLO
cross section with initial state partons. The terms in-
side the (m+ 1)-parton phase space integral in con-
trast corresponds to the dipole subtraction bit. Alto-
gether, and including the convolution with parton distri-
bution, the relevant term to be evaluated can thus be cast
into

>

a,b

X { / do, (mp, n2p) + / dos, (mp, n2p, u%)}
m—+1 m

/ dnidnz fa (n1, 42) fo (02, 13)
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/ d771 d772fa (7717/1'%‘) fb (772’/1’%)

x {/ [dof, (mp, nap) x 1(e)]

+Z/Ol dx/m {(K“’“l(:ﬂ)—i-Pa’a/ (xmp,w;u%))
x clllaf,b(xmp, 77217)}

+%: /0 e /m {(Kb’b'(x)+Pb’b, (wmep, 5 1) )
x daB, (mp, wnzﬁ)] } :

(69)

The only correlation of the insertion operators I, P, and K
with the Born level matrix element is within color space.
To be more specific, this implies that only the following
structures emerge

doB (pa,pp) = m(1, ... ,m;a,b|[1,... ,m;a,b)y,and
dO’ by 7J)(punpb) :’m<17 .. 7m;a7b|Ti'Tj|1v' .. 7m;a7b>m
(70)

for all ¢ # j, where ¢ and j may label both final and initial
state partons. Since any of the appearing matrix elem-
ents with insertion operators can be written as a sum of
such structures, the color factors will be skipped in the fol-
lowing and the operators will be treated simply as scalar
functions.

The terms P and K induce dependences on x, which
combined yield result in the structure

(9()) L +0(1 —z)h(x)+k(x) . (71)

Here, h(xz) and k(x) are regular functions in x and the
‘+’-distribution is defined by its action on a generic test

function a(z)
1
z/ dz [a(z) —
0

1
/ dza(z) (g(z))
0

Then the r.h.s. of (69) can be cast into the form

>

a,b

/ {I(e)dof’b(mn mp)+)

x [dol, (zmp, 12p) —

+ k@ () doB, (zmp, 12P)) + h' (1) dol, (mp, 77217)]

2
b/

/ dnrdnz fo (1, 1) fo (02, 17)

/ (g™ (@)

doB, (mp, n2p)]

1
[ da(g" @) [do% mp,amep)
0
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—dop, (mp,m2p)| + k> (z)dol, (mp, w??zﬁ))

+ R (1) doB (mp, nzﬁ)] } . (73)

The functions g*¢ (z), k7' (x), and hea' (1) can be read
off the corresponding functions in Appendix A.

Computationally the most demanding part is the ac-
tual Born-level cross section doB,, due to its potentially
expensive multi-particle matrix element, which typically
suffers from factorial growth with the number of external
particles. Thus, the calculation can be significantly acceler-
ated if the expression is rearranged such that doB, has to
be computed only once for a single configuration at a given
phase space point. This can be achieved by changing the in-
tegration variables i to ” = xn. After renaming 7’ back to
71 and reordering the summation over a and a’ (b and b’) the
expression above reads

Z / dndn fa(m, p3) fo (12, 1) / o, (mp, n2p)

far(m/, u3)
{ +Z/ {wfjm,/f)
% (ga’,a(x)+ka’,a(x)> _ Jor (01, 113

fa(7717p“%‘)
fa nlnuF) a’,a aa
Ea; a(m, i) <h - (m))

2, o
_fb'(772,NF) b',b(w):|

g“"“(w)]

b(z) + kb/’b(x)>

fb(n27:u’12-?)
for( 7727ﬂF b'b b'.b
+ ht—G° , 74
> ) ( () 8
where the G%%(n =/, " dxg®t(x) are analytically
computed.

The insertion operator I(¢), (53) is given as a Laurent
series in €. For the implementation the interesting part is
o €, since the poles must have been analytically extracted

before.*

3.3.2 Implementation and organisation

The numerical calculation of the finite contributions from
integrated counterterms is organized as (74) suggests, i.e.
the basic unit (class Single_Virtual_Correction) covers
everything that is associated with a specific m-parton cross
section.

For the actual calculation, basically all colour corre-
lated matrix elements in (70) are necessary. The contribut-
ing amplitudes are, of course, the same for all of them, only

4 For testing purposes, however, it is trivial to also determine
the coefficients of the e “2- and e~ -poles and to compare with
known results of virtual correction terms.
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the colour matrix is different. Therefore, a generalized ver-
sion of Single_Process is employed that is able to deal
with a multitude of colour matrices to calculate all required
matrix elements at once. Anything else needed for the cal-
culation of the finite contribution is a long list of rather
simple scalar functions and constants. The integration over
x is done numerically, i.e. for each set of external momenta
x is diced within the corresponding interval.

3.4 Phase space integration

Together with the automatic generation of matrix elements
AMEGIC++ also generates specific, process-dependent
phase-space mappings for efficient integration. There,
some a priori knowledge about the integrand is used
[61-63] together with self-adaptive Monte Carlo integra-
tion methods [17,64—66]. Here, the general method will
briefly be summarized for the case of tree-level processes
and its application to the integrals coming with the sub-
traction method will be discussed.

3.4.1 Importance sampling and multi-channel integration

The general idea behind importance sampling is to improve
the numerical behaviour of an integrand by a change of in-
tegration variables,

f(z(y)) 1 daz(y)
z)dz = / dy, where - = .
[ raraa= [ S g dy
(75)
The new variable y is chosen in a way such that L is asuf-

ficiently smooth function, leading to a reduced error esti-
mate of the integration. Typically, the weight g is chosen as
a simplification/approximation of f, such that the integral
y = [ gdx can be analytically solved.

For phase space integrals maps relating vectors of uni-
formly distributed random numbers {a;} inside the inter-
val [0,1] to the four-momenta of the external particles of
a physical process {p;}

{pj} =X ({ai})

are in the center of the sampling process. The weight func-
tion in such a case g is then determined by

1_ don(X({ai}))
P Ty (77)

For a single squared amplitude it is easy to determine suit-
able momentum mappings and weights: invariant masses
of the propagators are determined according to the propa-
gator and angles for particle splitting are chosen isotropi-
cally; the finial state momenta are then determined out of
those variables. For instance, for a massless propagator the
invariant s would be generated by

(76)

_1
s = [aspat+(1—a)sit] 77,

(78)
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with the corresponding weight

1—v 1

9= 1—v 1—v v
smax_smm sv

(79)

The constants spax and sy, are upper and lower bound-
aries of the invariant mass, which depend on the overall
topology of the phase space point and potential cuts; v in
contrast is an effective exponent for the propagator, sub-
ject to choice.

Weight distributions for contributions from several am-
plitudes can be then combined using the multi-channel
method. A total weight function G is defined through

G:Zakng
k

where the gi are the weight functions for the single con-
tributions (channels) and the «y, are arbitrary coefficients
with o >0 and ), ap = 1. The corresponding momen-
tum mapping is then given by

forZal <a<Zal

The multi-channel method relies on automatically adapt-
ing the coefficients a such that the variance of the phase
space integral is minimized.

(80)

X({ai}, @) = Xi({ai})

Further refinement. The efficiency of the integrator is
improved if additionally the self-adaptive VEGAS algo-
rithm [65] is applied on the channels. VEGAS is very effi-
cient in the numerical adaptation to functions, where the
peaking behaviour is not too extreme and which are fac-
torisable to a product of one-dimensional functions. This
is clearly not given for full matrix elements. However, the
structure represented by a single channel fulfills this con-
dition. Thus, in AMEGIC++ VEGAS is used to adapt
selected channels to structures that go beyond their rough
approximations and which are typically hard to specify
analytically or which are a priori unknown.

For each channel VEGAS is used to generate a mapping
& from uniformly distributed random numbers to a non-
uniform distribution, still inside the interval [0, 1], and a cor-
responding weight vy. To combine this with the multi-chan-
nel method the mapping X ({a;}) for single channels must
meet the requirement to be invertible. The full map reads

forZal <a<2al

(82)

X({ai}, a) = Xp(&k({ai})

For a momentum configuration {p;} the weight is therefore
given by

L {pd) . (83)

Z QL gk {p] 'Uk(

{p]

Subtracted processes. The subtraction method necessitates
the evaluation of two independent integrals, namely in-
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tegrals over the m-parton and the (m+ 1)-parton phase
space. In both cases mappings generated for the tree level
process of the same dimensionality are used. For the inte-
gration of the (m + 1)-parton phase space soft and collinear
regions must be included. In this case the lower limit for the
invariant masses of many propagators (e.g. (78)) must be
zero. To keep the integral over the weight finite the expo-
nent v must be set to a number smaller than 1. The actual
shape of those propagators is hard to specify a priori. It
depends on the jet definition and on the balance between
the real correction process and the subtraction term (the
integrand can be positive or negative). Taken together,
however, it seems not unreasonable to assume a small ex-
ponent. The VEGAS refinement adapts very good to the
actual shape and the final integration efficiency after opti-
misation has only a weak dependence on the initial value of
v. Since the VEGAS algorithm optimizes on the variance
of the integrand it can, to some extend, also deal with the
numerical problems related to “missed binning”, which will
be discussed in the following section.

The m-parton phase space is much simpler. Since most
parts of the integrand are proportional to the born matrix
element it tends to work very well with this phase space
setup.

3.5 Cuts and analysis framework for NLO calculations

Triggers and observables for NLO calculations have to be
chosen with care. The general strict requirement not to
spoil the cancelation of infrared divergencies has already
been discussed in Sect. 2.3.

Before going into any details concerning cuts, it is im-
portant to notice that a rule is mandatory of how cuts act
on the different contributions to the NLO cross section.
This rule must exist in a m-parton and a (m+ 1)-parton
version, where the latter needs to satisfy the conditions of
infrared safety in degenerate phase space regions. In prac-
tical terms, this implies that the (m+ 1)-parton version of
the cut must allow for exactly one parton to become soft or
collinear, while the m-parton version has to omit all singu-
lar regions.

Second, (18) requires for the cut of the m+ 1 phase
space integral to be applied separately to the real cor-
rection process (using the m 4 1-parton version) and to
each dipole term (using the m-parton version, applied on
the momenta of the mapped m-parton configuration). In
general there might be kinematic configurations, where
the real correction process ends up outside the accepted
phase space region but some dipole terms do not and vice
versa. This leads to the problem of “missed binning”: If
such a configuration occurs close to a singular region, large
contributions result, which do not cancel completely. Ul-
timately, this leads to large numerical fluctuations, which
need to be addressed. This is a common issue for all sub-
traction methods.

So far, the following cuts have been made available in
AMEGICH++:

— A simple cut for jets is implemented as follows: a suit-
able jet algorithm (e.g. kr) [67-70] is used to con-
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struct jets from the final state partons and their mo-
menta. Then the number of jets above a given pp-cut is
counted. A phase space point is valid if this number is
greater or equal m.

— Of course also cuts that only act on particles not taking
part in strong interactions can be applied. If initial-
initial dipoles are present this also has to be done sep-
arately for the real correction and for the dipole terms,
since the momentum mapping in this case modifies all
final state particle momenta. Implemented are cuts on
invariant masses, on total or transverse energies, on ra-
pidities or on particle angles w.r.t. the beam.

Sherpa’s ANALYSIS-package has been extended to be
able to deal with weighted events from the NLO subtrac-
tion procedure. For example, and to be more specific, con-
sider the case of a cross section which is differential to some
infrared safe quantity F, i.e. a distribution to be binned
in a histogram dF'. For the m-parton integral no special
treatment is mandatory: for a given momentum configu-
ration, dF' can directly be evaluated and filled into the
corresponding bin. For the real correction and the dipole
subtraction functions in the (m+ 1)-parton integral, F' has
to be evaluated for each contribution separately, similar to
the phase-space cut. Again, the problem of “missed bin-
nings” appears, if contributions to a single event end up in
more than one bin.

4 Checks of the implementation

In this section a number of tests of the correct implemen-
tation of the subtraction algorithm and of the integration
routines are described. These tests are mainly technical in
nature, results relating to truly physical observables are
discussed in the next section, Sect. 5.

4.1 Explicit comparisons

Before moving on to technical checks, it is worth stating
that a number of direct comparisons of individual terms
from the program presented here with those obtained from
M. Seymour’s Fortran code DISENT have been performed.
The latter is a dedicated program to compute NLO cross
sections for the deep inelastic scattering processes e p —
e~ +jet, e p— e +2 jets and for electron-positron an-
nihilation to two and three jets. This direct comparison
is possible, since DISENT uses exactly the same subtrac-
tion formalism, allowing to compare individual terms at
given phase space points. All terms listed in the following
showed full agreement of the two codes, up to the numeri-
cal precision.
The comparison included:

— Dipole subtraction terms for the real correction:
all flavour configurations for dipoles with final state
emitters and spectators as well as for dipoles with ini-
tial state emitters/final state spectators and final state
emitters/initial state spectators have been checked.

— Terms from the finite part of the insertion operator I,
cf. (49) and (53).
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— Terms from the insertion operators K and P for the
case of one initial state parton, cf. (52) and the imple-
mented version (74).

Furthermore integrated results of the virtual and real
parts of the NLO corrections in this subtraction scheme
where compared and agreed within statistical errors for all
accessible processes.

4.2 Test of convergence for the real ME

An obvious first technical check of the overall package con-
sists of testing the convergence behaviour of the dipole
subtraction terms close to the singular region. To this end,
the m + 1-parton phase space of the regularized real correc-
tion part is numerically integrated over. The crucial issue
is to ensure that the integrand remains finite over the full
phase space, in addition the performance of the integration
algorithms deserve some consideration.

Clearly, for the numerical calculation a small phase
space region around each singular configuration has to be
cut out. Although the dipole terms are expected to become
equal to the matrix elements there, technically speaking
infinite or very large numbers must be subtracted in this
region, leading to large fluctuations and hence to errors
due to the limited numerical precision at which the calcula-
tion is performed. Therefore a variable ay;, is introduced,
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which on the basis of kinematic variables of corresponding
dipole functions, reads as follows:

Ompin = mln (adipole) 5 (84)
dipoles
where
Yij k for Dyj - dipoles
1—-2;5, for D -dipoles
ad; = ’ J 85
dipole U; for D} - dipoles (85)
U; for D - dipoles

This parameter « serves as a cut-off in such a way that
for an externally given parameter acyt kinematic configu-
rations with ayin < eyt are omitted.

In Fig. 3 the dependence of the subtracted cross sec-
tion on eyt for four sets of real correction processes,
namely e~ et — 3 jets, e"et — 4 jets, e"p — e +2 jets
and pp — 3 jets. All types of dipoles and splitting functions
contribute to the dipole terms which are necessary to reg-
ularize those processes. It is apparent that for acy; ~ 107>
the cross section stabilizes close to its final value.

To study the numerical behaviour near the singularity
in more detail, in Fig. 4 the absolute value of the subtracted
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cross section, binned in intervals of i, is depicted. For
all studied processes the contribution to the cross section
drops down by at least four orders of magnitude with de-
creasing am,i, and confirms the observations for full sub-
tracted cross sections made before.

The strong increase accompanied with statistical er-
rors of 100% or larger for oy values below 107°-10~1!
signals defects due to the limited numerical precision (dou-
ble precision ~ 10712). One reason is the already men-
tioned numerical problem when subtracting extreme large
and almost equal numbers. Another reason is the precision
of the momentum four-vectors itself, because the preci-
sion of the external particles residing on their m = 0 mass
shell is also limited by the numerical precision. This of
course may consequently lead to errors of that order in
the matrix element calculation. Thus, Fig. 4 allows to de-
termine best choices for ey, somewhere between 10~°
and 10711,

4.3 Consistency checks with free parameters

In Sect. 2.6 ways of modifying the subtraction terms
without changing the singular behaviour have been dis-
cussed. Such modifications can be employed for non-
trivial tests of the implementation, since the modifica-
tions will affect both, the real part and the virtual part
of the NLO cross sections, with their sum remaining
constant.

In Fig. 5 the total NLO correction for the cross sec-
tions of e"e™ — 2 jets, e"e™ — 3 jets, e"p — e~ + jet and
pp — W~ — e~ 1, and their real and virtual contributions
are displayed as functions of the parameter «, as intro-
duced in Sect. 2.6. The fact that the sum remains constant
within statistical errors provides a non-trivial confirmation
of the correct implementation of the algorithm. It should
be noted here that the calculation of the cross section of the
processes under consideration invokes all types of dipole
functions as well as the most general case of the insertion
operators from the integrated dipole terms.

10 ? Ton o AB\ — IT
10'F . = -
_ E A h x~ &
0¥ LN ,
k) 3 i g
g 10°F = -4 4
=] F T
B 107F T T
3 E . k2
o r real corfectlon to:
= 10°F | © ee’>2jets f f
F |2 ee'->3jets
10%F ep->e +jet f
E o pp->2jets
107 L1 \ \ \ ! ! ! ! ! ! ! !
-1 2 3 4 5 6 -7 -8 -9 -10 -11 -12 -13
log(amin)

Fig. 4. Normalized absolute values of cross sections in bins of
Qamin- Setups and phase space cuts are the same as in Fig. 3
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By using the same number of phase space points for
each integral and comparing statistical errors, it can be
seen that this parameter can also be used to optimize the
numerical behaviour. Clearly, best results are obtained if
the values of the virtual and real contributions are both
as small as possible, thus reducing the size of the fluctua-
tions. It should be noted that the error bars in Fig. 5 are
given not including the leading order part of the cross sec-
tion. Since relative errors for the latter can be expected to
be much smaller if evaluated for the same number of phase
space points, the (relative) statistical error for the full NLO
cross section will be significantly reduced.

5 First physical applications

In this section, some simple applications will demonstrate
the performance of the dipole subtraction procedure, as
implemented, for the calculation of physically relevant ob-
servables. The born matrix elements, dipole subtraction
terms to regularize the real correction and corresponding
finite terms to be added to the virtual correction were gen-
erated automatically by AMEGIC++4. The one-loop am-
plitudes have been explicitly implemented for the consid-
ered processes.

5.1 Three-jet observables at LEP

To compute three jet cross section at next-to-leading order
the one-loop matrix element given in [37] has been imple-
mented. The expression given there is averaged over the
direction of incoming momenta, which is sufficient for ob-
servables that are not correlated to the beam direction.

In Fig. 6 LO and NLO predictions are displayed for
observables sensitive to O(ag). In particular, the event
shape observables 1-thrust, major, C-parameter and the
Durham 3 — 2 jet rate are compared with measurements
performed at LEP on the Z%peak by DELPHI [71]. All
data are normalized to unity. The normalisation for the
calculated cross section, however, is somewhat compli-
cated. This is because in the calculation three-jet events
are required in each case, translating into the necessity
to apply a phase space cut. On the other hand, the data
are more inclusive and also include comparably soft re-
gions, where fixed-order perturbation theory is known to
fail and must be supported by resummation techniques.
The normalisation for the calculations has thus be chosen
such that it agrees with data in the “safe” regions. This
exposes the differences between LO and NLO calculations
best. As a consequence, the corresponding normalisation
factor of both calculations is not identical. From the re-
sults of Fig. 6 it can be deduced that for all observables
the range described sufficiently well by the calculation is
extended for the NLO calculations. For both, the region
described by soft physics (left side in all plots) as well as
phase space regions populated by additional hard QCD ra-
diation (right side in all event shape plots) the prediction
has been improved.
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5.2 DIS: e~ p — e~ + jet

The one loop matrix element for this process is given by the
well known expression

CFOCS 1 47r,u2 ‘
2 _ 2
|M|(1—loop) - |M|(b0rn) 2w F(l _6) ( Q2

(86)

where Q? = —¢? > 0 with ¢ the momentum transfer be-
tween the electron and the proton.

Figure 7 shows differential cross sections w.r.t. the
transverse momentum and rapidity of the scattered elec-
tron and the hardest jet at leading and at next-to-leading
order. The CM-energy has been taken as v/105 GeV, corres-
ponding to a 50 GeV electron beam and a 500 GeV proton
beam. The parton distribution function CTEQ6M [72] has
been employed, factorisation and renormalisation scales
have been fixed to Q2. A phase space cut on the electron
of pr > 10 GeV has been imposed. The NLO correction for
this setup is comparably small, for the total cross section
it is of the order of 5% and negative. The ratios of NLO
and LO calculation, however, are not constant for all ob-
servables. At NLO the cross section rises for increasing
momentum transfer, up to a correction of 40% for trans-
verse momenta of electron and jet of the order of 150 GeV.

5.3 W~ production at Tevatron

The one-loop virtual contribution to this process can be
obtain by crossing relations from (86) and is given by

Cras 1 4rp®\ €
2r I'(l—e) \ Q?

|M|?l—loop) = |M|%born)

where now Q2 = 3§, the CM energy squared of the incoming
partons.

Figure 8 shows cross sections for Tevatron run II, differ-
ential in the rapidity of the W ~-boson and the transverse
momentum of the electron, respectively. The parton distri-
bution function CTEQ6M [72] has been employed, factori-
sation and renormalisation scales have been fixed to m;.

The total and differential cross sections are in full agree-
ment with predictions obtained using the next-to-leading
order parton level generator MCFM [21].

6 Conclusions and outlook

In this publication a fully automated implementation
of the Catani—Seymour dipole formalism in the frame-
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work of the matrix element generator AMEGIC++ has
been presented. It allows to automatically generate the
process-dependent real correction terms for given Born
cross sections with massless external particles and the
corresponding real subtraction terms. The integration of
the subtracted real correction terms is performed au-
tomatically with a multi-channel method, giving rise
to an appreciable convergence. The implementation has
carefully been checked for correctness, invoking con-
sistency checks with free finite terms which may be
added to the subtraction terms. Through the explicit in-
clusion of virtual terms a parton-level calculator is so
available.

In the future, the code will be further updated to
include massive external particles and to provide a full
parton-level generator at NLO.
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Appendix : Insertion operators etc.

In this appendix, the ingredients of the master equa-
tion (52),

02, (Pas o) + A0S, (Pas by 1) = [ 0B, (D, py) X 1(€)]
1
3 [ e (10 04 P i)
/ 0
X dof’fb(wpmpb)}
1 !/ !/
—|—Z/ dx[ (Kb’b (z)+PYP (:L’pb,:r; u%))
p 0
X dU(]J:)) 14 (pa7 pr):| )

(A1)

will be repeated. a and b specify initial state partons, and
the sum runs over all accessible a’ and b’ occurring in the
PDF. The insertion operator I is given by

I({p};e) = —g’—j—ml_ 5T %%VI(G)

A\ €
XZTI'TJ( i ) ;

oy 2p1pg

(A.2)
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dotted lines denote the real
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and the virtual corrections
to the Born cross section, re-
spectively. The lower panels
of each plot show the ratio

P I

p(first jet) [GeV]

cf. (53), and again the indices I and J run over all initial
and final state partons, while the universal functions V; (e),
encoding the singularity structure, merely depend on the
flavour of I and read

1 72

Vi(e) = T2 <€_2_?> o (%4—1) + K +0(e),

cf. (54). The individual v; and K will be listed in (A.7)
and (A.8).

The factorisation scale dependent terms are propor-
tional to insertion operators P4’ ({p}, xpa, x; p}), which
reads

! B 1
P ({ph wpas 2 k) = 5P (0) g 3 T T
a’ J+#a!

12
xIn —FE (A.4)
2mpa ‘pr

The regularized Altarelli-Parisi kernels P*(x) are listed
in (A.9).

The factorisation-scheme dependent terms are propor-
tional to the initial-state insertion operators K. For one
initial-state hadron only, this operator reads

between the leading order
and the next-to-leading order
results

n(first jet)

a,a’ as -aa’ aa’ aa’ i Ti : T:z
K* (x):—{K (z) — Kgig(x) +0 ZT

27
}, (A5

X l(lix)Jr—l—(S(l—x)

with the functions Kg“sl(x) and K%’ (z) given below, cf.
(A.10) and (A.12), and with the v; listed in (A.7). Note
that the subscript “F.S.” denotes the factorisation scheme.
For two initial state partons, the initial-state insertion op-
erator is given by (55),

K> (2) = &>

- {K () - K ()0
L (L _
P (1_x)++5<1 2)

Ty To = u
—TQLK’ (m)}7

(A.6)

with the functions K¢’ (z) given in (A.11).
The ; and K occurring in (A.3) are related to inte-
grals of the Altarelli-Parisi kernels listed below, (A.9), and
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Fig. 8. Rapidity distribution
of the W™ -boson (left plot)
and transverse momentum of
the electron for the process
pp—> W™ — e De at Teva-
tron run II, calculated at
leading order and next-to-
leading order. Dashed and
dotted lines denote the real
and the virtual corrections

to the Born cross section, re-
spectively. The lower panels
of each plot show the ratio
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z z
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nw)
read
3 11 2
Ye=7=5C0F,79 = —Car—5TrN; (A7)
2 6 3
and
7 7w
K, =Ks;g=[=-——) C
q q <2 6> F
67 w2 10
K,=|—=——) Co——TrN; A8
\ (18 6) DN, (A

respectively. The Altarelli-Parisi kernels emerging in the
factorisation-scale dependent terms of (A.4) are

PY(z) = P19(z) = CFM

l1—z
P99(z) = 20, (%>++1_Tm —1—|—x(1—x)]
+5(1—2) {%c —;TRNf} (A.9)

The functions K% (z) are explicitly given as

_ _ 1—
RK99(z) = K%(z) = PY(z) In Tx +Cpa,

_ _ 1—
RK99(z) = K99(z) = P%(z) In Tx +2Tra(l—2),

50 T00

between the leading order
and the next-to-leading order
results

TS0 200
p(e) [GeV]

X

Fn (1;‘”—1+x(1—x)”

I_(gg(x):QC’A[<Llnl_x>
l1-z n

—5(1—x) [(% —7r2> Cp — 19—6TRNf] , (A.10)
whereas the functions K (z) read
K%(z) = K9(z) =0,
K% (z) = f(ig(:r) =PY(z)In(1—x),
K9%(z) = K9%(z) = P9%(z) In(1 —z),
K9(z) = K¥(z) = Cp l <13x In(1 —m)) - %5(1 — )
+
—(1+2)In(1 —x)} )
a9 2 2
K99 (x)=Ca (1_xln(1—x)>+—?5(1—x)

T

+2 (1 L 14a01 —x)) In(1 —x)] . (A1)

Finally, the factorisation-scheme dependent terms are
given through

K% (z)=0,

- 1422 1-z 3 9+ 5z
Kt~ K~ e[ 15 (w2 0) 25
9q 9q 2 2 -z
Kiis = Kfis = Tr| (¢° + (1 —2)*) In

X

+8m(1—x)—1},

K]%gIS = Kggls = _K]%%S )

99 _ 99
KDIS - _2NfKDIS )

Kpjs = Kfis =0. (A.12)
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